
Computer Vision
SIFT

Scale Invariant Feature Transform

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

Image Formation

Gaussian filter- examples

• Gaussian distribution

Gaussian filter-examples

Gaussian filter-examples

Why care about SIFT

• SIFT isn't just scale invariant. You can change the following,
and still get good results:

• Scale .

• Rotation.

• Illumination.

• Viewpoint.

Types of invariance

• Illumination

Types of invariance

• Illumination

• Scale

Types of invariance

• Illumination

• Scale

• Rotation

Types of invariance

• Illumination

• Scale

• Rotation

• Affine

Types of invariance

• Illumination

• Scale

• Rotation

• Affine

• Full Perspective

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

The scale space

• Do you want to look at a leaf or the entire tree? If it's a tree,
get rid of some detail from the image (like the leaves, twigs,
etc) intentionally.

• The only way to do that is with the Gaussian Blur.

• So to create a scale space, you take the original image and
generate progressively blurred out images

Here's an example:

Scale spaces in SIFT
• SIFT takes scale spaces to the next

level. You take the original image,
and generate progressively
blurred out images. Then, you
resize the original image to half
size. And you generate blurred
out images again. And you keep
repeating.

• Here's what it would look like in
SIFT:

Technical Details

• Octaves and Scales:

The number of octaves and scale depends on the size of the original
image. While programming SIFT, you'll have to decide for yourself how
many octaves and scales you want. However, the creator of SIFT
suggests that 4 octaves and 5 blur levels are ideal for the algorithm.

• The first octave:

If the original image is doubled in size and antialiased a bit (by blurring
it) then the algorithm produces more four times more keypoints. The
more the keypoints, the better!

Blurring
• Mathematically, "blurring" is referred to as the convolution of the gaussian operator

and the image. Gaussian blur has a particular expression or "operator" that is applied to
each pixel. What results is the blurred image.

• The symbols:

• L is a blurred image

• G is the Gaussian Blur operator

• I is an image

• x,y are the location coordinates

• σ is the "scale" parameter. Think of it as the amount of blur. Greater the value, greater
the blur.

• The * is the convolution operation in x and y. It "applies" gaussian blur G onto the image
I.

• This is the actual Gaussian Blur operator.

Amount of blurring
• The amount of blurring in each image is important. It goes like this.

Assume the amount of blur in a particular image is σ. Then, the
amount of blur in the next image will be k*σ. Here k is whatever
constant you choose.

• See how each σ differs by a factor sqrt(2) from the previous one.

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

LoG approximations

• Laplacian of Gaussian:

These Difference of Gaussian
images are approximately
equivalent to the Laplacian of
Gaussian. And we've replaced a
computationally intensive
process with a simple subtraction
(fast and efficient).

Example

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

Finding keypoints

• Locate maxima/minima in DoG images

The first step is to coarsely locate the maxima and minima. This is
simple. You iterate through each pixel and check all it's neighbours. The
check is done within the current image, and also the one above and
below it. Something like this:

Example

Keypoint Localization (cont’d)

(a) 233x189 image

(b) 832 DoG extrema

(c) 729 left after low
contrast threshold

ratio based on Hessian

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

Getting rid of low contrast keypoints

•Removing low contrast features

• This is simple. If the magnitude of the intensity (i.e.,
without sign) at the current pixel in the DoG image
(that is being checked for minima/maxima) is less than
a certain value, it is rejected.

Example

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

Keypoint orientations

2 2(,) ((1,) (1,)) ((, 1) (, 1))

(,) tan 2(((, 1) (, 1)) / ((1,) (1,)))

m x y L x y L x y L x y L x y

x y a L x y L x y L x y L x y

Keypoint orientations
The magnitude and orientation is calculated for all pixels around the keypoint. Then,
A histogram is created for this.
In this histogram, the 360 degrees of orientation are broken into 36 bins (each 10
degrees). Lets say the gradient direction at a certain point (in the "orientation
collection region") is 18.759 degrees, then it will go into the 10-19 degree bin. And
the "amount" that is added to the bin is proportional to the magnitude of gradient at
that point.
Once you've done this for all pixels around the keypoint, the histogram will have a
peak at some point.
you see the histogram peaks at 20-29 degrees. So, the keypoint is assigned
orientation 3 (the third bin)
Also, any peaks above 80% of the highest peak are converted into a new keypoint.
This new keypoint has the same location and scale as the original. But it's orientation
is equal to the other peak.
So, orientation can split up one keypoint into multiple keypoints.

http://aishack.in/tutorials/histograms-from-simplest-to-the-most-complex/

Keypoint orientations

Orientation Assignment
• Create histogram of gradient directions, within a region around

the keypoint, at selected scale:

36 bins (i.e., 10o per bin)

0 2p

2 2(,) ((1,) (1,)) ((, 1) (, 1))

(,) tan 2(((, 1) (, 1)) / ((1,) (1,)))

m x y L x y L x y L x y L x y

x y a L x y L x y L x y L x y

(, ,) (, ,)* (,)L x y G x y I x y

AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features.

Keypoint Descriptor

8 bins

Keypoint Descriptor (cont’d)

16 histograms x 8 orientations

= 128 features

1. Take a 16 x16

window around

detected interest

point.

2. Divide into a

4x4 grid of

cells.

3. Compute

histogram in

each cell.

(8 bins)

Applications of SIFT

• Object recognition

• Object categorization

• Location recognition

• Robot localization

• Image retrieval

• Image panoramas

Object Recognition

Object Models

Object Categorization

Location recognition

Matches

22 correct matches

Matches

33 correct matches

Image Registration

Applications

Fingerprint Identification Research at UNR

Minutiae Matching

Delaunay Triangulation

Object Recognition

Target Recognition

• Department of Defense (Army, Airforce, Navy)

Traffic Monitoring

Face Detection

Face Recognition

Facial Expression Recognition

Human Activity Recognition

