Computer Vision
SIFT

Scale Invariant Feature Transform

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

Image Formation

IHlumination (energy) .]

o
- SOUrce p i]
/ l\‘ [o

T Output (digitized) image
Imaging systen

(Internal) image plane

Scene element

a
b

cde

FIGURE 2.15 An example ol the digital image acquisition process. (a) Energy ("illumination™) source. (b} An el-
cment of a scene. (¢) Imaging svstem. (d) Projection of the scene onto the image plane. (e) Digitized image.

THINIKA ==

Gaussian filter- examples
|

e Gaussian distribution 1

original

THINIKA ==

Gaussian filter-examples
|

original sigma = 3

THINIKA ==

Gaussian filter-examples

original sigma = 10

THINIKA ==

Why care about SIFT

* SIFT isn't just scale invariant. You can change the following,
and still get good results:

e Scale.
* Rotation.

THINIKA ==

And we want to find these objects in this scene:

Types of invariance

e |[lumination

THINIKA ==

Types of invariance

e |[lumination

e Scale

THINIKA ==

Types of invariance

e |[lumination
e Scale

e Rotation

THINIKA ==

Types of invariance

* lllumination
* Scale

* Rotation

* Affine

e TN A ==

Types of invariance

* lllumination

* Scale

* Rotation

* Affine

* Full Perspective

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

The scale space

* Do you want to look at a leaf or the entire tree? If it's a tree,

get rid of some detail from the image (like the leaves, twigs,
etc) intentionally.

* The only way to do that is with the Gaussian Blur.

* So to create a scale space, you take the original image and
generate progressively blurred out images

THINIKA ==

Here's an example:

THINIKA ==

Scale spaces in SIFT

» SIFT takes scale spaces to the next
level. You take the original image,
and generate progressively
blurred out images. Then, you
resize the original image to half
size. And you generate blurred
out images again. And you keep
repeating.

-

 Here's what it would look like in
SIFT:

KA ==

Technical Details

 Octaves and Scales:

The number of octaves and scale depends on the size of the original
image. While programming SIFT, you'll have to decide for yourself how
many octaves and scales you want. However, the creator of SIFT
suggests that 4 octaves and 5 blur levels are ideal for the algorithm.

* The first octave:

If the original image is doubled in size and antialiased a bit (by blurring
it) then the algorithm produces more four times more keypoints. The
more the keypoints, the better!

THINKA ==

Blurring

* Mathematically, "blurring" is referred to as the convolution of the gaussian operator
and the image. Gaussian blur has a particular expression or "operator" that is applied to
each pixel. What results is the blurred image.

* The symbols:

* Lisablurred image L(z,y.0) = Glz,y,0) # I(2,)
* (3 is the Gaussian Blur operator

* | isan image

® X,Y are the location coordinates

® O is the "scale" parameter. Think of it as the amount of blur. Greater the value, greater
the blur.

. ?’he *is the convolution operation in x and y. It "applies" gaussian blur G onto the image

* This is the actual Gaussian Blur operator. 5 | l (2?21
a2\ Y, 0) = —¢ R4 L

L —Il'linl(/AEG

Amount of blurring

* The amount of blurring in each image is important. It goes like this.
Assume the amount of blur in a particular image is . Then, the
amount of blur in the next image will be k*o. Here k is whatever

scale B
4.787187 1. AARAAA 1.414214 2 . 8Ba80 2.828427
g 1.414214 2. hEBAEA 2.828427 4 . AEHEEA L.656854
E 2.828427 1. BARAAA 5.656854 8 . HeHEEA 11.313788
5.650854 8 . BEBRaE 11.313788 16 . BHBBEE 22.627417

* See how each o differs by a factor sqrt(2) from the previous one.

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

LoG approximations

A
 Laplacian of Gaussian: S —

rir

| | o |

These Difference of Gaussian octave) > ===

. . - y
images are approximately

equivalent to the Laplacian of
Gaussian. And we've replaced a
computationally intensive

process with a simple subtraction
(fast and efficient). ocaw]

Difference of
Gaussian Gaussian (DOG)

THINIKA ==

THINIKA ==

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

Finding keypoints

* Locate maxima/minima in DoG images

The first step is to coarsely locate the maxima and minima. This is
simple. You iterate through each pixel and check all it's neighbours. The
check is done within the current image, and also the one above and
below it. Something like this:

THINIKA ==

The Difference of Caussian
images

Detected maxima/minima

Example

THINKA ==

Keypoint Localization (cont’d)

—

TR
LLE - (a) 233x189 image

s o) o

(b) 832 DoG extrema

(c) 729 left after low
contrast threshold

ratio based on Hessian

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

|Getting rid of low contrast keypoints

* Removing low contrast features

* This is simple. If the magnitude of the intensity (i.e.,
without sign) at the current pixel in the DoG image
(that is being checked for minima/maxima) is less than
a certain value, it is rejected.

THINIKA ==

Detected maxima/minima Maxima/minima that pass test

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assighing an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

Keypoint orientajcions

Cradient
. magnitudes ,

| ! |
= ~ |

Gaussian blurred image Gradient |

orientations| =
\ &

Gradient magnitudes and orientations are calculated using these formulae:

m(x,y) = J(LOx+Ly) = L(x =1, ¥))* + (L(x, y +1) — L(x, y ~1))?
d(x,y)=atan2((L(x,y+1) - L(x,y-1)/(L(x+1,y)-L(x=-1)))

THINIKA ==

Keypoint orientations

The magnitude and orientation is calculated for all pixels around the keypoint. Then,
A histogram is created for this.

In this histogram, the 360 degrees of orientation are broken into 36 bins (each 10
degrees). Lets say the gradient direction at a certain point (in the "orientation
collection region") is 18.759 degrees, then it will go into the 10-19 degree bin. And
the "amount" that is added to the bin is proportional to the magnitude of gradient at
that point.

Once you've done this for all pixels around the keypoint, the histogram will have a
peak at some point.

you see the histogram peaks at 20-29 degrees. So, the keypoint is assigned
orientation 3 (the third bin)

Also, any peaks above 80% of the highest peak are converted into a new keypoint.
This new keypoint has the same location and scale as the original. But it's orientation
is equal to the other peak.

So, orientation can split up one keypoint into multiple keypoints.

THINIKA ==

http://aishack.in/tutorials/histograms-from-simplest-to-the-most-complex/

Keypoint orientations

1O0%E

S0

T FRERITS T ERRERSREs AR RS R s IR
TRFCES g; Fiy ¢§ HHHHHHHHHHHHHH =
T L R e v

THINIKA ==

Orientation Assignment

* Create histogram of gradient directions, within a region around
the keypoint, at selected scale: L(x,y.0) =G(X, y,o)* (X, y)

m(x,y) = \/(L(X+1, y)-L(x=1¥))* +(L(x,y +1) - L(x, y -1))°
d(x,y)=atan2((L(x,y+1)—-L(x,y-1)/(L(x+1y)-L(x-1,¥)))

. 36 bins (i.e., 10° per bin)

o ¢ 2m

THINIKA ==

AGENDA

* Introduction.

* The scale space.

* LoG Approximation.

* Finding keypoints.

* Get rid of bad key points.

* Assigning an orientation to the keypoints.
* Generate SIFT features.

THINIKA ==

Keypoint Descriptor

D ——
I /;" e
1] 7

/

T

YL INTY ¥ ALY
L—i
|
¥
N *H
'\““w«x/‘
S

A/ \ [

Image gradients Keypoint descriptor

THINIKA ==

.
A N
AV /AR
cifiNm AN
EMANENEE
EINIEIN N
MANAEDI M INE
NI PRI
LNy [y

—~——

sjusipelb abew

Joyduosap uiodAay

N THinKA =

Keypoint Descriptor (cont’d)

1. Take a 16 x16

window around HWIIF\ (8 bins)

detected Interest 0 2n

angle histogram

I‘\b""‘"'-'yl {;
" -",‘s.tta.',

2. Divide intoa i s

' .
‘. - ./
- . -—. .
- ‘.
g ° "
. N . .
. o .
w!
- NI HME TN UM NN e ol- .- W -4 ~+—~
) 7n 1
4x4 grid of SRTORORAL DHER Do s Caanl sl Relie
AR opoeENInGeneE
- [s .
slel ool oSl by R4 ~] o] ha d, o oA
IIS JRILALT LB ol e DIV RILE LIREP “u- - . ..‘0 - o=
‘e ’ /T .
] HMEARAR] DANMEINM BRI Y = s 0 LR iy S
SRR NG eI neEmr 3
a .
sloalsdol =il rlv]n]n]els] =] # 4 : /7
-~ -
'
'\

- " ~
— -— —e

point.

M R e RIS T
]l"'i\""ill

3. Compute Image gradients Keypoint descriptor
histogram in 16 histograms x 8 orientations

each cell. = 128 features _
THINIKA ==

Applications of SIFT

* Object recognition

* Object categorization
* Location recognition
* Robot localization

* Image retrieval

* Image panoramas

THINIKA ==

Object Recognition

Object Models

THINIKA ==

THINIKA ==

Object Categorization

Motorbikes Airplanes Cars (Side) Cars (Rear) Spotted Cats Background
‘ g - E—— ?) _ .

|

THINIKA ==

lon

Location recogn

THINIKA ==

Matches

22 correct matches THINIC /AEG

Matches

33 correct matches

THINIKA ==

mage Registration

THINIKA ==

Applications

THINIKA ==

Fingerprint Identification Research at UNR

Minutiae Matching

=SS

Delaunay Triangulation

THINIKA ==

Object Recognition

«

THINIKA ==

Target Recognition

e Department of Defense (Army, Airforce, Navy)

THINIKA ==

Traffic Monitoring

-
N, e
ldentifier:

THINIKA ==

Face Detection

THINIKA ==

Face Recognition

THINIKA ==

Facial Expression Recognition

THINIKA ==

Human Activity Recognition

Person 0: Periodic Motioir = 7 454 | Person 0: Interaction with Pérsol 1 " Person(): Periodic Motior, ~ ¥
Carry Ohject Person 1: Interaction with Person 0 Does Not Carry Ohject

Person 1: Periodic Motion, Personl: Periodic Motion
Does Not Carry Ohject Carry Ohject

LY.

THINIKA ==

