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Image Formation



Gaussian filter- examples

• Gaussian distribution
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Why care about SIFT

• SIFT isn't just scale invariant. You can change the following, 
and still get good results:

• Scale .

• Rotation.

• Illumination.

• Viewpoint.
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Types of invariance

• Illumination
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• Rotation

• Affine

• Full Perspective
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The scale space

• Do you want to look at a leaf or the entire tree? If it's a tree, 
get rid of some detail from the image (like the leaves, twigs, 
etc) intentionally.

• The only way to do that is with the Gaussian Blur.

• So to create a scale space, you take the original image and 
generate progressively blurred out images



Here's an example:



Scale spaces in SIFT
• SIFT takes scale spaces to the next 

level. You take the original image, 
and generate progressively 
blurred out images. Then, you 
resize the original image to half 
size. And you generate blurred 
out images again. And you keep 
repeating.

• Here's what it would look like in 
SIFT:



Technical Details

• Octaves and Scales:

The number of octaves and scale depends on the size of the original 
image. While programming SIFT, you'll have to decide for yourself how 
many octaves and scales you want. However, the creator of SIFT 
suggests that 4 octaves and 5 blur levels are ideal for the algorithm.

• The first octave:

If the original image is doubled in size and antialiased a bit (by blurring 
it) then the algorithm produces more four times more keypoints. The 
more the keypoints, the better!



Blurring
• Mathematically, "blurring" is referred to as the convolution of the gaussian operator 

and the image. Gaussian blur has a particular expression or "operator" that is applied to 
each pixel. What results is the blurred image.

• The symbols:

• L is a blurred image

• G is the Gaussian Blur operator

• I is an image

• x,y are the location coordinates

• σ is the "scale" parameter. Think of it as the amount of blur. Greater the value, greater 
the blur.

• The * is the convolution operation in x and y. It "applies" gaussian blur G onto the image 
I.

• This is the actual Gaussian Blur operator.



Amount of blurring
• The amount of blurring in each image is important. It goes like this. 

Assume the amount of blur in a particular image is σ. Then, the 
amount of blur in the next image will be k*σ. Here k is whatever 
constant you choose.

• See how each σ differs by a factor sqrt(2) from the previous one.
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LoG approximations

• Laplacian of Gaussian:

These Difference of Gaussian 
images are approximately 
equivalent to the Laplacian of 
Gaussian. And we've replaced a 
computationally intensive 
process with a simple subtraction 
(fast and efficient). 



Example
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Finding keypoints

• Locate maxima/minima in DoG images

The first step is to coarsely locate the maxima and minima. This is 
simple. You iterate through each pixel and check all it's neighbours. The 
check is done within the current image, and also the one above and 
below it. Something like this:



Example



Keypoint Localization (cont’d)

(a) 233x189 image

(b) 832 DoG extrema

(c) 729 left after low 
contrast  threshold

ratio based on Hessian
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Getting rid of low contrast keypoints

•Removing low contrast features

• This is simple. If the magnitude of the intensity (i.e., 
without sign) at the current pixel in the DoG image 
(that is being checked for minima/maxima) is less than 
a certain value, it is rejected.



Example



AGENDA

• Introduction.

• The scale space.

• LoG Approximation .

• Finding keypoints.

•Get rid of bad key points.

•Assigning an orientation to the keypoints.

•Generate SIFT features. 



Keypoint orientations
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Keypoint orientations
The magnitude and orientation is calculated for all pixels around the keypoint. Then, 
A histogram is created for this.
In this histogram, the 360 degrees of orientation are broken into 36 bins (each 10 
degrees). Lets say the gradient direction at a certain point (in the "orientation 
collection region") is 18.759 degrees, then it will go into the 10-19 degree bin. And 
the "amount" that is added to the bin is proportional to the magnitude of gradient at 
that point.
Once you've done this for all pixels around the keypoint, the histogram will have a 
peak at some point.
you see the histogram peaks at 20-29 degrees. So, the keypoint is assigned 
orientation 3 (the third bin)
Also, any peaks above 80% of the highest peak are converted into a new keypoint. 
This new keypoint has the same location and scale as the original. But it's orientation 
is equal to the other peak.
So, orientation can split up one keypoint into multiple keypoints.

http://aishack.in/tutorials/histograms-from-simplest-to-the-most-complex/


Keypoint orientations



Orientation Assignment
• Create histogram of gradient directions, within a region around 

the keypoint, at selected scale:

36 bins (i.e., 10o per bin)
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Keypoint Descriptor

8 bins





Keypoint Descriptor (cont’d)

16 histograms x 8 orientations 

= 128 features

1. Take a 16 x16 

window around 

detected interest 

point.

2. Divide into a 

4x4 grid of 

cells.

3. Compute 

histogram in 

each cell.

(8 bins)



Applications of SIFT

• Object recognition

• Object categorization

• Location recognition

• Robot localization

• Image retrieval

• Image panoramas



Object Recognition

Object Models





Object Categorization



Location recognition



Matches

22 correct matches



Matches

33 correct matches



Image Registration



Applications



Fingerprint Identification Research at UNR

Minutiae Matching

Delaunay Triangulation



Object Recognition



Target Recognition

• Department of Defense (Army, Airforce, Navy)



Traffic Monitoring



Face Detection



Face Recognition



Facial Expression Recognition



Human Activity Recognition


